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12.1 Latent variable models and the EM algorithm

Thus far we focused on distribution families p(x; θ) of a relatively simple form where esti-
mators (e.g., maximum likelihood) could be found in closed form. Today we will consider
parametric families that are more descriptive than e.g. Gaussians, and make use of latent
variables.

Uncertainty is generated by variables we can’t observe (latent/hidden). It is generally
impractical to consider a model that explicitly models all the sources of uncertainty (e.g.,
modelling the exact physical properties of a tossed coin such that these properties fully
determine the outcome of the toss). However, in many cases, we have an understanding of
what the important variables are and how the observations are dependent on those.

Examples:

• The distribution of height within men and women of a given age group. If we know
the gender, it is reasonable to model height as a normal variable. Otherwise the height
distribution will have two peaks, one for each gender.

• Consider a Naive Bayes model for spam detection. But now assume we do not see the
true class (i.e., the Y variable is hidden), only the bag of words representation. The
features we will see are a mixture of two types of features (i.e., spam and non-spam).

In all these cases there is a variable we cannot observe. Denote it by Z. And we have
a reasonable parametric model for p(X = x, Z = z;θ) where θ is a set of parameters. For
example in the height example (single observation), assume the observation is generated
by choosing a gender z with probability cz and then sampling a height from the Gaussian
N (x, µz, σ

2) (we use N (x, µ, σ2) to denote the density of the Gaussian at point x). So:

p(x, z;θ) = czN (x, µz, σ
2
z) (12.1)

From this it follows that the distribution over X (which is the variable we actually observe)
is given by

p(x;θ) =
∑
z

p(x, z;θ) =
∑
z

czN (x, µz, σ
2
z) (12.2)

This is referred to as a mixture distribution (this is a legal model if cz ≥ 0 and
∑

z cz = 1).
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If we have multiple observations x1, . . . , xn they will correspond to z1, . . . , zn (which we
assume are independent) and

p(xn, zn;θ) =
n∏
i=1

p(xi, zi;θ) (12.3)

so

p(xn;θ) =
∑
zn

∏
i

p(xi, zi;θ)

=
∑

z1,...,zn−1

∑
zn

∏
i

p(xi, zi;θ) =
∑

z1,...,zn−1

n−1∏
i=1

p(xi, zi;θ)
∑
zn

p(xn, zn;θ)

. . . =
∏
i

∑
zi

p(xi, zi;θ) =
∏
i

p(xi;θ)

Thus IID samples from a mixture distribution correspond to marginalization over n latent
variables.

12.2 Maximum likelihood with hidden data - EM

Say we have a model p(x;θ) that results from marginalization over some p(x, z;θ). We
would like to find the maximum likelihood parameters θ (assume x may also stand for a size
n sample, but our derivations will not assume that explicilty).

One thing to do is to simply write the likelihood p(x;θ) and maximize it as a function
of θ via an optimization method of your choice (e.g., gradient ascent). There is however,
a very elegant algorithm that often provides closed form updates for the parameters. It is
called the Expectation Maximization algorithm and was invented by Dempster, Laird and
Rubin (77).

Note: The likelihood function in the mixture case is typically non-convex and there is
no procedure for finding a global optimum for it. Algorithms typically seek a local minimum
in this case, and some can be shown to find it.

The key idea is this: assume that if we had complete information, i.e., someone gave us
the value of z that we did not observe. In many cases the maximization of the full likelihood
p(x, z; θ) can be found in closed form. For example, in the Gaussian mixture case, the
maximum likelihood estimate for µz would be the empirical mean of the observations with
z(i) = z. The estimator for cz would be the relative frequency of z in the sample.

But, clearly we do not have the unobserved variables... The idea in EM is as follows.
Given some parameter vector θt we can calculate the probability p(z|x;θt) that z takes a
given value. If this probability were one for a particular value we would be in the fully
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observed scenario. Even if not, we can treat the probability as the probability that the un-
observed variable will take this value. EM then suggests we consider the following likelihood:

Q(θ;θt) =
∑
z

p(z|x;θt) log p(x, z;θ) (12.4)

This averages the log-likelihood according to the posterior probability obtained from θt. It
is then natural to maximize this with respect to θ. The EM algorithm generates a sequence
of parameter esimates θ1, . . . ,θt,θt+1, . . . such that p(x;θt) ≤ p(x;θt+1), and the algorithm
converges to a stationary point of the likelihood function.

Here is the procedure. Repeat for t = 1, . . . , T :
Expectation step: Construct the function Q(θ;θt). This requires calculating p(z|x;θt) for
the current parameter values.
Maximization step: Set θt+1 = arg maxQ(θ;θt).

Claim: The EM algorithm converges to a stationary point of the likelihood function
p(x; θ).

We will first show that the likelihood increases at every step (note this does not imply
convergence to a stationary point yet). Denote `(θ) = log p(x;θ). Then `(θt) ≤ `(θt+1).

Start with rewriting Q(θ;θt):

Q(θ;θt) =
∑
z

p(z|x,θt) log p(x, z;θ) =
∑
z

p(z|x,θt) log [p(z|x,θ)p(x;θ)]

= log p(x;θ) +
∑
z

p(z|x,θt) log p(z|x,θ)

= log p(x;θ)−DKL[p(z|x,θt)|p(z|x,θ)]−H[p(z|x,θt)]

Say θt+1 maximizes the above. Then (discarding the constant)

log p(x;θt+1)−DKL[p(z|x,θt)|p(z|x,θt+1)] ≥ log p(x;θt)−DKL[p(z|x,θt)|p(z|x,θt)]

So
log p(x;θt+1)− log p(x;θt) ≥ DKL[p(z|x,θt)|p(z|x,θt+1)] (12.5)

This shows improvement at each step. Another way of understanding this is by defining
the function Q̄(θ,θt) = Q(θ;θt)+H[p(z|x,θt)]. This is a lower bound on the true likelihood
and equals the likelihood for θ = θt. It’s easy to see why this implies maximizing Q̄ (equiva-
lent to maximizing Q yields improvement). This is therefore an instance of the minorization
maximization approach you saw in the recitation.

Note: It’s easy to show that fixed point of EM correspond to stationary points of the
likelihood. Note that these might actually be local minima but they would be very unstable.
It is possible to show under mild conditions that EM converges to a fixed point and that if
we don’t start out at a local maximum we will converge to a stationary point (can still be a
saddle point unless more conditions are satisfied).
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12.2.1 EM for a Gaussian mixture

We’d like to use this to estimate the following model:

p(xn;θ) =
∏
i

∑
z

czN (xi;µz, σ
2
z) (12.6)

The free parameters are cz (where these must be non-negative and sum to one) and µz, σ
2
z

(the latter should be non-negative).
We have seen that this model is equivalent to a model p(xn, zn;θ) where we marginalize

over the unobserved z. It thus perfectly fits the EM framework.
Assume that at time t we have the estimates ct, µt, σt. Lets look at the Q function:

Q(θ;θt) =
∑
zn

p(zn|xn,θt) log p(xn, zn;θ)

=
∑
zn

p(zn|xn,θt)
∑
i

log p(xi, zi;θ)

=
∑
i

∑
zn

p(zn|xn,θt) log p(xi, zi;θ)

=
∑
i

∑
zi

p(zi|xi,θt) log p(xi, zi;θ)

Note that p(zi|xi,θt) can be calculated given the current value of the parameters as:

p(zi = m|xi;θt) =
p(zi = m,xi;θ

t)∑
k p(zi = k, xi;θ

t)
=

p(xi|zi = m;θt)p(zi = m)∑
k p(xi|zi = k;θt)p(zi = k)

which results in:

p(zi = m|xi;θt) =
N (xi, µ

t
m, σ

2,t
m )ctm∑

kN (xi, µtk, σ
2,t
k )ctk

(12.7)

We have now expressed Q(θ;θt), and can proceed to the M step of maximizing it. Taking
the log and derivative w.r.t. µm yields

∂Q(θ;θt)

∂µm
=
∑
i

p(zi = m|xi,θt)
(xi − µm)

σ2
m

(12.8)

Hence the maximizer (and next estimate) is

µt+1
m =

1∑
i p(zi = m|xi,θt)

n∑
i=1

p(zi = m|xi,θt)xi (12.9)
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Similarly we have expression for the variance:

σ2,t+1
m =

1∑
i p(zi = m|xi,θt)

n∑
i=1

p(zi = m|xi,θt)(xi − µt+1
m )2 (12.10)

Below we show that the new c is given by:

ct+1
m =

1

n

n∑
i=1

p(zi = m|xi,θt) (12.11)

To derive ct+1
m we use Lagrange multipliers (no need for non-negativity constraints since they

come out automatically). The Lagrangian is:

L(cm, λ) = Q(θ;θt)− λ

(∑
m

cm − 1

)
(12.12)

The relevant part of Q is only the one where zi = m.

Q(θ;θt) = const+
∑
i

p(zi = m|xi;θt) log p(xi, zi = m) = const+
∑
i

p(zi = m|xi;θt) log cm

(12.13)

∂L(cm, λ)

∂cm
=

1

cm

∑
i

p(zi = m|xi,θt)− λ (12.14)

Since
∑

m cm = 1 we have:

1 =
1

λ

∑
m,i

p(zi = m|xi,θt) =
n

λ
(12.15)

12.3 Bayesian Parameter Estimation

In standard ML, we treat θ as an unknown parameter which we optimize over. In the
Bayesian framework, one views θ itself as a random variable Θ. We therefore also assume
there is a prior distirbution on θ, denote by q(θ).

The generation process is then to sample a θ from q(θ) and then sample x1, . . . , xn
independently from p(xi|θ). The overall process is then:

p(x1, . . . , xn,θ) = q(θ)
∏
i

p(xi|θ) (12.16)
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The nice thing is this now allows us to consider the posterior distirbution p(θ|x1, . . . , xn)
which reflects our uncertainty about the parameter, after having viewed the data.

p(θ|x1, . . . , xn) =
p(x1, . . . , xn,θ)

p(x1, . . . , xn)
∝ q(θ)

∏
i

p(xi|θ) (12.17)

By ∝ we mean this is equality up to a muliplicative constant which normalizes the distribu-
tion.

The posterior is a distribution over θ values rather than a single estimator as we had in
ML. If we want to return a single value there are two popular choices:

• MAP estimator - Return the θ that maximizes the posterior.

• Expected Value - Return the expected value of Θ under the distribution p(θ|x1, . . . , xn).

Before giving examples, let us consider what happens as we get more data. Consider the
log of the posterior, scaled by 1

n
:

1

n
log p(θ|x1, . . . , xn) =

1

n
log q(θ) +

1

n

∑
i

log p(xi|θ) (12.18)

As n→∞ the first term will vanish, and the second term is the likelihood. So we conclude
that as we have more data, the prior will have less and less effect on the maximizer of the
posterior, and the estimator will get closer to the ML estimator.

12.3.1 Gaussian Example

Example (Gaussian family and prior): consider the case where θ is the mean of a
Gaussian distribution:

p(x|θ) = N (x, θ, 1) (12.19)

And the prior is f(θ) = N (θ, 0, 1). Given a set of IID observations, the posterior is then:
Thus:

p(θ|xn) ∝ 1√
(2π)n

e−
1
2

∑
i(xi−θ)2

1√
2π
e−

1
2
θ2 (12.20)

Thus:

p(θ|xn) ∝ e−
1
2

∑
i(xi−θ)2e−

1
2
θ2

∝ e−
1
2
((n+1)θ2−2θ

∑
i xi)

∝ e−
n+1
2

(θ− 1
n+1

∑
i xi)

2

= N (θ,
1

n+ 1

∑
i

xi,
1

n+ 1
)
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The Bayesian estimator is the mean of the posterior and thus we have:

θL2(x
n) =

1

n+ 1

∑
i

xi (12.21)

Some observations about this:

• The estimator behaves as if we had another observation xn+1 = 0 (although we only
have n observations). This dummy observation is the outcome of using the prior (which
in this case is indeed has mean zero).

• The variance of the posterior shrinks with n. This implies that it will be more strongly
peaked around its mean, and hence more confident of the estimate. It makes sense
since we are getting more observations.

• The posterior is also a Gaussian (same as the prior and the parametric family). When
a posterior has the same form as the prior for a given family, we say the prior is a
conjugate prior for that family. Thus a Gaussian prior is a conjugate prior for the
Gaussian family.

12.3.2 Beta Priors

The Beta distribution over variable 0 ≤ θ ≤ 1 is defined as:

p(θ;α, β) =
1

B(α, β)
θα−1(1− θ)β−1 (12.22)

where B(α, β) is a normalization constant known as the Beta function. Its mean is α
α+β

. We
will next see that it is the conjugate prior of the Bernouli distribution, where the Bernouli
family p(x; θ) is defined for x ∈ {0, 1} and

p(x|θ) =

{
θ x = 1

1− θ x = 0
(12.23)

Say we want to estimate θ given x with a Bernouli family and Beta prior. Lets see what
the posterior is:

p(θ|x) ∝ θα−1(1− θ)β−1θx(1− θ)1−x

= θα+x−1(1− θ)β+1−x−1

Thus we have that f(θ|x) = B(α + x, β + 1 − x). The posterior mean is α+x
α+β+1

. Repeating

this n times we will have after n observations: f(θ|xn) = B(α +
∑

i xi, β + 1−
∑

i xi). The

posterior mean is thus:
α+

∑
i xi

α+β+n
. This has the following nice interpretation: assume that
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originally we had α successes (x = 1) and β failures (x = 0). We now add n data points to
this initial data, and the resulting estimate is exactly the proportion of successes in this new
data.

Recall that the maximum likelihood in this case is simply 1
n

∑
i xi.


