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1.1 MAP of two Gaussians

Recall that the normal, or Gaussian, distribution density function is defined as:

f(x) =
1√
2πσ2

· e−
(x−µ)2

2σ2

where µ is the expectation and σ2 is the variance.

Suppose we are given a point x ∈ R, and we need to assign a binary label to it (1 or 0).
As discussed in the lecture, we assume that the data is sampled from a distribution D(x, y),
where x is our data point and y is its label. In addition, suppose we know the distributions
Pr(x|y = 0) and Pr(x|y = 1), denoted by f0(x) and f1(x), respectively. In particular, we
know that they are both Gaussian, with the same σ2, but with different means, µ0 and µ1,
for 0 and 1, respectively. Finally, we assume that the probability to sample a positive sample
(i.e. y = 1) is known and we denote it by p.

Given x, what is our best guess for y? First, we need to define a suitable loss function.
However, since we force y to be 0 or 1, most reasonable loss function are identical to the
simple 0-1 loss function, which we will assume. We therefore would like to decide y = 1 if
Pr(y = 1|x) > Pr(y = 0|x). It remains to derive a simple decision condition for x. First, we
use the Bayes rule for Pr(y = 1|x):

Pr(y = 1|x) = Pr(x|y = 1) · Pr(y = 1)

Pr(x)

similarly,

Pr(y = 0|x) = Pr(x|y = 0) · Pr(y = 0)

Pr(x)
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We need not develop the denominator here, since it is cancelled:

Pr(y = 1|x) > Pr(y = 0|x) ⇔ Pr(x|y = 1) · Pr(y = 1)

Pr(x)
>

Pr(x|y = 0) · Pr(y = 0)

Pr(x)

⇔ Pr(x|y = 1)

Pr(x|y = 0)
>

Pr(y = 0)

Pr(y = 1)

⇔ f1(x)

f0(x)
>

1− p

p

⇔
1√
2πσ2

· e−
(x−µ1)

2

2σ2

1√
2πσ2

· e−
(x−µ0)

2

2σ2

>
1− p

p

⇔ e−
(x−µ1)

2−(x−µ0)
2

2σ2 >
1− p

p

⇔ −(x− µ1)
2 − (x− µ0)

2

2σ2
> log

(
1− p

p

)
⇔ (x− µ1)

2 − (x− µ0)
2 < −2σ2 log

(
1− p

p

)
⇔ (x2 − 2xµ1 + µ2

1)− (x2 − 2xµ0 + µ2
0) < −2σ2 log

(
1− p

p

)
⇔ −2x(µ1 − µ0) + (µ2

1 − µ2
0) < −2σ2 log

(
1− p

p

)
⇔ −2x(µ1 − µ0) < −2σ2 log

(
1− p

p

)
− (µ2

1 − µ2
0)

⇔ x > log

(
1− p

p

)
· σ2

µ1 − µ0

+
µ1 + µ0
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In summary, we have seen that there exists a constant C, such that if x > C, we will decide
that y = 1. Further inspection shows us that as p (the probability of sampling y = 1) is
higher, the lower of a threshold we need to decide y = 1, and vice versa.

1.2 Concentration Bounds

In probability theory, concentration inequalities provide bounds on how a random variable
deviates from some value (typically, its expected value). As we go through the several bounds
we have learned, we will apply each of them to the case of biased coins. Let X1, . . . , XN

be i.i.d random variables, where Xi ∼ Bernoulli(p) - n flipped coins, each with probability
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p to get ”heads”. What can we say about the number of times we got ”heads”? Or, to
make it easier on ourselves, we instead look at the average: X = 1

n

∑n
i=1Xi. Its expectation

is E(X) = p; what can be say about the probability to be far from the expectation? In
particular, we are interested in:

Pr(X ≥ p+ ε), Pr(X ≤ p− ε)

1.2.1 Markov inequality

We will make different assumptions on X, and get gradually better bounds. First, we will
only assume X ≥ 0. The Markov inequality is

Pr(X ≥ a) ≤ E(X)

a

The proof is simple; expand the expectation to get:

E(X) =
∞∑
x=0

x · Pr(X = x)

≥
∞∑
x=a

x · Pr(X = x)

≥ a ·
∞∑
x=a

Pr(X = x) = a · Pr(X ≥ a)

Application to biased coin flips. Here, E(X) = p, and a = p+ ε (we can’t get a bound
on the other side here easily). We get:

Pr(X ≥ p+ ε) ≤ p

p+ ε
= O

(
1

ε

)
which is a linear tail bound.

1.2.2 Chebyshev inequality

Now, we drop the positivity assumption, but instead assume that the variance is finite and
known - σ2, the Chebyshev inequality is:

Pr(|X − E(X)| ≥ b) ≤ σ2

b2
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The proof is simple: Define Y = (X − E(X))2 and a = b2, and apply the Markov inequality
to get:

Pr(Y ≥ a) ≤ E(Y )

a
⇒

Pr((X − E(X))2 ≥ a) ≤ E((X − E(X))2)

a
⇒

Pr(|X − E(X)| ≥ b) ≤ σ2

b2
⇒

Application to biased coin flips. Here, Var(X) = p(1 − p)/n. For the two-tailed in-
equality, we can get:

Pr(X ≥ p+ ε) + Pr(X ≤ p− ε) = Pr(|X − p| ≥ ε) ≤ p(1− p)

nε2
= O

(
1

ε2

)
which is a quadratic bound, but still polynomial.

1.2.3 Hoeffding inequality

Now we assume that we have a sum of i.i.d. Bernoulli variables, S = X1 + . . . +Xn, where
Xi are defined as before, and E(S) = np. The Hoeffding inequality is:

Pr(S ≥ E(S) + c) ≤ e−
2c2

n

Pr(S ≤ E(S)− c) ≤ e−
2c2

n

An outline of the proof is available in the lesson scribes. This is a slightly weaker bound
than the more general Chernoff bound.

Application to biased coin flips. Here, X = S/n. So, we can get:

Pr(X ≥ p+ ε) = Pr(S/n ≥ p+ ε) = Pr(S ≥ np+ nε) ≤ e−
2(nε)2

n = e−2ε2n

Pr(X ≤ p− ε) ≤ e−2ε2n

which is an exponential bound.
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1.2.4 Chernoff bounds

We cite two more bounds. The additive form (absolute error) Chernoff bound: LetX1, . . . , Xn

be i.i.d. Bernoulli variables, Xi ∼ Bernoulli(p), and X = 1
n

∑n
i=1 Xi. Then:

Pr (X ≥ p+ ε) ≤

((
p

p+ ε

)p+ε(
1− p

1− p− ε

)1−p−ε
)n

Pr (X ≤ p− ε) ≤

((
p

p− ε

)p−ε(
1− p

1− p+ ε

)1−p+ε
)n

The multiplicative form (relative error) Chernoff bound: Let S = X1 + . . . +Xn be the
sum of n independent – but not necessarily identically distributed – variables, and µ = E(S).
Then:

Pr(S ≥ (1 + δ)µ) ≤
(

eδ

(1 + δ)(1+δ)

)µ

Pr(S ≤ (1− δ)µ) ≤
(

e−δ

(1− δ)(1−δ)

)µ

1.2.5 A numerical example

Suppose we flip 100 unbiased coins. Can we bound the probability that more than 3/4 of
them will fall on ”heads”? Formally, we have p = 0.5, ε = 0.25, n = 100. Then:

1. The Markov inequality gives us Pr(X ≥ p+ ε) ≤ 0.5/0.75 = 2/3.

2. The Chebyshev inequality gives us Pr(X ≥ p+ ε) ≤ Pr(X ≥ p+ ε)+Pr(X ≤ p− ε) =
Pr(|X − p| ≥ ε)0.52/(100 · 0.252) = 0.04.

3. The Hoeffding inequality gives us Pr(X ≥ p+ ε) ≤ e−2·0.252·100 ≈ 0.0000037.


