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5.1 Constrained Optimization

5.1.1 Lagrange Multipliers

Suppose we have the following problem of constrained optimization with equality constraints:

min
x∈Rd

f(x)

s.t.

gi(x) = 0 for i = 1, . . . , N

Define the Lagrangian of this problem as follows:

L(x, λ1, . . . , λN) = f(x) + λ1g1(x) + . . .+ λNgN(x)

Under some regularity requirements, a necessary condition for x∗ being a critical point for
f under the constraints, it that there exist values λ∗

1, . . . , λ
∗
N , such that (x∗, λ∗

1, . . . , λ
∗
N) is a

critical point of L (unconstrained); and specifically, that the gradient of the Lagrangian at
the point is 0:

∇L(x∗, λ∗
1, . . . , λ

∗
N) = 0

We will not prove this here.

5.1.2 Karush-Kuhn-Tucker Conditions

The KKT conditions extend the ideas of Lagrange multipliers to handle inequality constraints
in addition to equality constraints. While there is a general formulation including both
equalities and inequalities, we will limit ourselves here1 to provide a first-order optimality
condition for the problem:

min
x∈Rd

f(x)

s.t.

gi(x) ≤ 0 for i = 1, . . . , N
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The Lagrangian is again defined as

L(x,α) = f(x) +
N∑
i=1

αigi(x)

where α are called the Lagrangian multipliers. The theory (on which we do not elaborate
here) tells us that the solution, α∗, to the dual program:

max
α

min
x

L(x,α)

s.t. αi ≥ 0 ∀i = 1, . . . , N

achieves the same optimal value (in all the cases which we will consider):

min
x

L(x,α∗) = f(x∗)

In order to find the optimal point x∗ in which this optimal value f(x∗) is attained, we
use the fact that x∗,α∗ must satisfy the KKT conditions:

∇L(x∗,α∗) = 0

α∗ ≥ 0

gi(x
∗) ≤ 0 ∀i = 1, . . . , N

αi = 0 ∨ gi(x
∗) = 0 ∀i = 1, . . . , N

Example. As an example, let us solve the problem

min
(x1,x2,x3)∈R2

x2
1 + x2

2 + x3

s.t. 2x1 + 2x2 ≥ 1

x3 ≥ 1

The Lagrangian is:

L(x,α) = x2
1 + x2

2 + x3 + α1(1− 2x1 − 2x2) + α2(1− x3)

For a fixed α, we want to calculate minx L(x,α). To do that, we equate the derivative to
zero:

∂L
∂x1

= 2x1 − 2α1 = 0 ⇒ x1 = α1

∂L
∂x2

= 2x2 − 2α1 = 0 ⇒ x2 = α1
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the second derivative is positive, so this is indeed a minimum. For x3, we encounter a different
scenario. The derivative is:

∂L
∂x3

= 1− α2 = 0

The derivative should still be 0, but it does not depend on x3, so we cannot get it as a function
of the α-s here. This means, that when the gradient is positive (1 − α2 ≥ 0 ⇒ α2 ≤ 1),
we can take arbitrarily small x3 and L will continue to decrease; therefore, if α ≤ 1, then
minx L(x,α) = −∞. Similarly, if the gradient is negative, we can take arbitrarily large
values of x3 to decrease that value of L. Therefore, we conclude that a (finite) minimum
exists if and only if α2 = 1. Since we are interested in the maximal value out of all of these
minima, we conclude that we can limit ourselves only to this value of α2, and instead solve
the problem:

max
α

min
x

L(x,α)

s.t. α1 ≥ 0

α2 = 1

Note that the additional constraint α2 ≥ 0 is satisfied automatically by the more stringent
constraint, α2 = 1. When α2 = 1, the value of the Lagrangian is:

L(x,α) = α2
1 + α2

1 + x3 + α1(1− 2α1 − 2α1) + α2(1− x3)

= −2α2
1 + α1 + α2 + x3(1− α2)

= −2α2
1 + α1 + α2

as expected, this expression should not depend on x3, and it indeed zeros out. Finding the
maximum over α1, subject to α1 ≥ 0, gives α∗

1 = 1/4, along with α∗
2 = 1, which we already

found out. Therefore, the maximal value the dual program attains is −2
(
1
4

)2
+
(
1
4

)
+1 = 9

8
,

and this is the minimum value our original optimization problem obtains. To find the optimal
point x in which the optimal value is attained, we utilize the additional KKT condition
(complementary slackness), that α2 = 0 ∨ 1 − x3 = 0, which in turn means that, since
α2 6= 0, that x3 = 1. Therefore, the optimal points are x∗

1 = x∗
2 = 1/4, x∗

3 = 1. We can verify
that indeed f(x∗) = 9/8 as expected.
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5.2 SVM - Unrealizable Case

In the lecture we saw the following optimization problem, for a maximum margin classifier
with possible margin errors. We have,

min
w,b,ξ

1

2
wTw + C

N∑
n=1

ξn

s.t. yn(w
Txn + b) ≥ 1− ξn ∀n = 1, . . . , N

ξn ≥ 0

where we have added slack variables ξn to ensure feasibility. The first step is to write the
Lagrangian:

L(w, b, ξ,α, r) =
1

2
wTw + C

N∑
n=1

ξn −
N∑

n=1

αn(yn(w
Txn + b)− 1 + ξn)−

N∑
n=1

rnξn

The first step is to assumed α and r are fixed, and minimize over w, b and ξ. We now
take the derivative of L and equate it with zero to minimize over w, b and ξ.

∇wL = w −
N∑

n=1

αnynxn = 0 =⇒ w∗ =
N∑

n=1

αnynxn

this gives us a way to compute the w that achieves the minimal point, given α. We call this
the w-constraint. For b we have

∂L
∂b

= −
N∑

n=1

αnyn = 0 =⇒
N∑

n=1

αnyn = 0

We call this the b-constraint. This effectively tells us that there are two classes of α, and that
the behavior of the Lagrangian’s minimal point differs between them. If

∑N
n=1 αnyn 6= 0,

then there is no minimal point; we can take arbitrarily large (or small, depending on the
sign of

∑N
n=1 αnyn) values of b. Therefore, the minimum value (technically, infimum), is

−∞. However, when
∑N

n=1 αnyn = 0, then the value of b doesn’t matter, so there is an finite
minimum. This stems from the fact that the Lagrangian is a linear function of b. Since we
are interested, at the next step, at the maximum over all of these values, we are not interested
in the case L(w∗, b∗, ξ∗,α, r) = −∞, so we limit ourselves only to the case

∑N
n=1 αnyn = 0.

For ξn we have
∂L
∂ξn

= C − αn − rn = 0 =⇒ αn = C − rn
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Substituting the constraints in L, we get

L(w, b, ξ,α, r) =
1

2
wTw −wT

(
N∑

n=1

αnynxn

)
︸ ︷︷ ︸

w

−b

(
N∑

n=1

αnyn

)
︸ ︷︷ ︸

0

+

(
N∑

n=1

αn

)
+

N∑
n=1

ξn (C − αn − rn)︸ ︷︷ ︸
0

=− 1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj +

N∑
n=1

αn

identically to the realizable case. The only difference is that now we have two additional
constraints, rn ≥ 0 and αn = C − rn. Since rn does not appear in the optimization, we
can drop it, and join the two constraints to αn ≤ C. (For any solution of αn we can set
rn = C − αn.)

Formally, the dual problem is

max
α,r

min
w,b,ξ

L(w, b, ξ,α, r) =min
α,r

1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj −

N∑
n=1

αn

s.t.
N∑

n=1

αnyn = 0

∀n C ≥ αn ≥ 0

Note that we changed the sign and turned the problem from max to min. This is an
instance of quadratic programming, for which there are efficient algorithms, additionally, it
is easy to see that the program is convex - see lesson scribe for a proof.

Extracting the optimal point. Suppose we solved the dual problem, and got a solution
α∗, r∗. How do we get the solution for the original problem? For w∗, recall we have the
w-constraint w∗(α) =

∑N
n=1 αnynxn, which gives us an explicit formula of w as a function

of the Lagrange multipliers.
When α∗

n > 0 (for a specific n), this means the constraint yn(w
Txn + b) = 1 must

be satisfied, due to the KKT conditions. Therefore, the support vectors are those with
α∗
n > 0. This allows us also to get the solution for b∗ - choose an n for which α∗

n > 0; then
b∗ = yn − (w∗)Txn.

Support vectors. As mentioend, the support vectors are those with α∗
n > 0. Note that

when we have an error in classification or in the margin, then ξn > 0 and therefore rn = 0,
which implies that αn = C. If C > αn > 0, this means as before that yn(w

Txn + b) = 1 and
ξn = 0, and thus xn is a support vector.


