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9.1 Weak and Strong Learners

In the PAC model there is a distribution D on a domain X. Random examples 〈x, c∗(x)〉
are drawn according to the distribution D and labeled using the target function c∗ ∈ C. The
goal of the learner is to find a hypothesis h ∈ H such that error(h, c∗) ≤ ε, with probability
1− δ. This is a strong learning model, since ε and δ can be arbitrarily small.

Recall that ε is the error rate of the algorithm and 1 − δ represents the confidence.
However, suppose we have an algorithm with low error rate but also low confidence, say
confidence 50%, or alternatively an algorithm with an error rate of 49% (slightly better than
flipping a coin) but high confidence level.

Is it possible to drive those weak algorithms to be strong learners? Intuitively, it is easier
to find hypothesis that is correct only 51 percent of the time, rather than a hypothesis that
is correct 99 percent of the time.

9.1.1 Boosting the confidence (1− δ)

Suppose algorithmA returns with probability 1−δ ≥ 1
2

a hypothesis h such that error(h, c∗) ≤
ε. An interesting question is whether it is possible to build a PAC learning algorithm A′

(from A)? The answer is positive.

Algorithm BoostConfidence(A):

1. Run A for k = log 2
δ

times (on fresh sample Si each time) with parameter ε′ = ε
3
.

2. Algorithm A on input Si outputs hypotheses hi, so we have hypotheses h1, . . . , hk.

3. Draw a new sample S of size m = 9
ε2

ln 4k
δ

= O( 1
ε2

ln k
δ
) and for each hypothesis hi

compute its error on S, i.e., the observed error êrror(hi).

4. Return ĥ∗ = arg minhi(êrror(hi(S))).
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Analysis of Algorithm BoostConfidence(A)

After the first stage of the algorithm, we would like at least one hypotheses hi to have error
at most ε/3. With probability at most (1

2
)k, ∀i : error(hi) >

ε
3
. Hence, with probability at

least 1− (1
2
)k, ∃i : error(hi) ≤ ε

3
.

Therefore, if we set k = log 2
δ
, then with probability 1 − δ

2
for at least one of h1, . . . , hk

we have error(hi) ≤ ε
3
. Denote by h+ this hypothesis.

Now we will show that after the second stage of the algorithm BoostConfidence(A),

with probability 1− δ
2
, outputs the hypothesis ĥ∗ (with minimum errors on S) such that,

error(ĥ∗) ≤ ε

2
+ min

i
(error(hi)) ≤ ε �

Proof: First, we use the Chernoff Bound to bound the probability for “bad” event, i.e.,
the difference between the empirical error of any hi and its real error is grater than ε

3
:

Pr[|êrror(hi)− error(hi)| ≥
ε

3
] ≤ 2e−(

ε
3
)2m

Second, we will bound by δ
2

the probability that such bad event will happen to any of the k
hypothesis hi using a Union Bound:

2ke−(
ε
3
)2m ≤ δ

2
�

Then, by isolating m, we will get:
1

e
ε2

9
m
≤ δ

4k

4k

δ
≤ e

ε2

9
m

ln
4k

δ
≤ ε2

9
m

9

ε2
ln

4k

δ
≤ m �

We have that for a sample of size at least m, with probability 1− δ
2
, for each of those hi:

|êrror(hi)− error(hi)| <
ε

3
thus,

error(h∗) < êrror(h∗) +
ε

3
�

From the first stage of the algorithm we already know that

êrror(h+) < error(h+) +
ε

3
<

2ε

3
�

Since êrror(h+) ≥ êrror(h∗), and we conclude that, with probability 1−δ, we have error(ĥ∗) ≤
ε. �
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9.1.2 Boosting the accuracy (ε)

One question we can ask: given an algorithm that outputs hypothesis with ε = 1
2
, can we

drive it to learn PAC? The answer is No, because such an algorithm will do exactly like
flipping a coin. Therefore we will need a stronger hypothesis.

Definition: Weak learning

Algorithm A learns Weak-PAC a concept class C with H if:
∃γ > 0,
∀c∗ ∈ C, (target function)
∀D, (distribution)
∀δ < 1

2
,

With probability 1−δ, algorithm A outputs an hypothesis h ∈ H such that error(h) ≤ 1
2
−γ.

Intuitively, A will guarantee an error rate of 49% instead of 1% of the PAC model. We
show, that if a concept class has a weak learning algorithm, then there is a PAC learning
algorithm for the class.

Note that running A multiple times on the same distribution D, does not work because
A might return the same hypothesis over and over again.

Example

Suppose we have the following target function c∗ (over bits) with a uniform distribution D:

if x1 = x2 = 0 =⇒ c∗(x) = some very hard function

otherwise =⇒ c∗(x) = 0

(e.g., the hardness depends on the first and the second bits.)

We can easily achieve 87.5% accuracy by flipping a coin if x1 = x2 = 0 and otherwise
predicting zero. The probability for the event x1 = x2 = 0 is 0.25 which gives us a total
accuracy of 87.5%. On the other hand, getting better than 87.5% accuracy is hard. For this
reason we want our weak learner to perform well with any distribution D! (In the example
a natural distribution is x1 = x2 = 0 and uniform otherwise).

Conclusion: An important requirement in the weak learning model is: for any distribution
(in the example we assumed a specific distribution).
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9.2 Three Weak Learners

9.2.1 Algorithm Description

Let A be a weak learning algorithm, and p the error probability of A.

Step 1: Run A with the initial distribution D1 to obtain h1 (error ≤ 1
2
− γ).

Step 2: Define a new distribution D2, such that

Sc = {x|h1(x) = c∗(x)}
Se = {x|h1(x) 6= c∗(x)}

D2(Sc) = D2(Se) =
1

2

To do so we will define D2 as follows:

D2(x) =

{
0.5
1−p ·D1(x) x ∈ Sc
0.5
p
·D1(x) x ∈ Se,

where p = D1(Se). For simplicity we assume that all the weak learners have error p = 1/2−γ.
To obtain h2 we will run A with D2. In order to sample from D2, at each step with select a
random bit b. If b = 0, we sample x from D1 until we find an x for which h1(x) = c∗(x). If
b = 1, we sample until h1(x) 6= c∗(x).

Step 3: The distribution D3 would be defined only on examples x for which h1(x) 6=
h2(x):

D3(x) =

{
D1(x)
Z

h1(x) 6= h2(x)

0 otherwise,

where Z = P [h1(x) 6= h2(x)]. To obtain h3 we will run A with D3. In order to sample from
D3, we sample x-s from D1 until we get h1(x) 6= h2(x).

Our combined hypothesis would be:

~(x) =

{
h1(x) h1(x) = h2(x)

h3(x) otherwise

Which is equivalent to ~(x) = MAJ(h1(x), h2(x), h3(x)).
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9.2.2 Estimation of the Error

Suppose each hypothesis hi errs with a probability of p, independently. What would be the
error of the majority of h1, h2, h3?

Error = 3p2(1− p) + p3 = 3p2 − 2p3 = p2(3− 2p)

We would like to show that this is the error probability without assuming the hypotheses
are independent. To do so we would partition the space into four subspaces:

Scc = {x|h1(x) = c∗(x) ∧ h2(x) = c∗(x)}
See = {x|h1(x) 6= c∗(x) ∧ h2(x) 6= c∗(x)}
Sec = {x|h1(x) 6= c∗(x) ∧ h2(x) = c∗(x)}
Sce = {x|h1(x) = c∗(x) ∧ h2(x) 6= c∗(x)}

Let Pcc = D1(Scc), Pee = D1(See), Pce = D1(Sce) and Pce = D1(Sce).
The error probability, with respect to the initial distribution D1, is Pee + (Pec + Pce)p.
Let us define α = D2(Sce). Therefore, from the definition of D2, in terms of D1 we get
Pce = 2(1− p)α.

Since D2(S∗e) = p, we have,

D2(See) = p− α
Pee = 2p(p− α).

From the construction of D2, since D2(Se∗) = D2(See) +D2(Sec) = 1/2, we have

D2(Sec) =
1

2
− (p− α)

Pec = 2p(
1

2
− p+ α).

Therefore the error is:

Pee + (Pec + Pce)p = 2p(p− α) + p(2p(
1

2
− p+ α) + 2(1− p)α) = 3p2 − 2p3

One can now build a recursive construction to derive an arbitrary PAC learner.

9.3 Adaptive Boosting - AdaBoost

The AdaBoost algorithm is an iterative boosting algorithm that enables us to create a strong
learning algorithm from a weak learning algorithm. The general idea of this algorithm is to
maintain a distribution on the input sample, and increase the weight of the harder to classify
examples so the algorithm would focus on them.
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9.3.1 Algorithm Description

Input: A set of m classified examples: S = {〈x1, y1〉 , 〈x2, y2〉 , · · · , 〈xm, ym〉} where yi ∈
{−1, 1}. A set H of weak classifiers.
Definitions: Let Dt denote the distribution of weights of the examples at time t, and Dt(i)
the weight of example xi at time t.
Initialization:

D1(i) =
1

m
∀i ∈ {1, · · · ,m}

Step: At each iteration we use a classifier ht ∈ H : X 7→ {−1,+1} that minimizes the
error on the current distribution (defined as εt = PrDt [ht(x) 6= c∗(x)] where c∗ is the target
function). At time t+ 1 we update the weights in the following manner:

Dt+1(i) =
Dt(i)

Zt
·

{
e−αt yi = ht(xi)

eαt yi 6= ht(xi)

=
Dt(i)

Zt
· e−yiαtht(xi)

where Zt is a normalizing factor to keep Dt+1 a distribution and αt = 1
2

ln 1−εt
εt

.
Output: The hypothesis we return after running the algorithm for T iterations is:

~(x) = Sign

(
T∑
t=1

αtht(x)

)
An advantage using the AdaBoost algorithm is that it removes the need of knowing the
parameter γ. Another advantage is that it is easy to implement and runs efficiently.

9.3.2 Bounding the Error

Theorem 9.1 Let ~ be the output hypothesis of AdaBoost. Then:

êrror(~) ≤
T∏
t=1

2
√
εt(1− εt)

=
T∏
t=1

√
1− 4γ2t

≤ e−2
∑
t γ

2
t

where the last inequality is obtained from the inequality 1 + x ≤ ex.
Conclusion: The training error drops exponentially fast in T for a constant γt = γ.
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Proof: The proof follows in three steps:
1. First, obtain the following expression for DT+1(i):

DT+1(i) =
D1(i)e

−yif(xi)∏
t Zt

where f(x) =
∑T

t=1 αtht(x).

Proof: Since Dt+1(i) is given by:

Dt+1(i) =
Dt(i)

Zt
e−yiαtht(xi)

we can unravel the recurrence to obtain:

DT+1(i) = D1(i)
T∏
t=1

e−yiαtht(xi)

Zt

= D1(i)
e−yi

∑T
t=1 αtht(xi)∏T
t=1 Zt

= D1(i)
e−yif(xi)∏

t Zt

�

2. Second, we bound the training error of ~ by the product of the normalizing factors Zt:

êrror(~) ≤
T∏
t=1

Zt
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Proof:

êrror(~) =
1

m

m∑
i=1

I(yi 6= ~(xi))

=
1

m

m∑
i=1

I(yif(xi) ≤ 0)

≤ 1

m

m∑
i=1

e−yif(xi)

=
1

m

m∑
i=1

m

(
T∏
t=1

Zt

)
DT+1(i)

=

(
T∏
t=1

Zt

)
m∑
i=1

DT+1(i)

=
T∏
t=1

Zt,

where I is the indicator function. The third line follows from the observation that when
I(yif(xi) ≤ 0) = 1, then yif(xi) ≤ 0 and so e−yif(xi) ≥ 1 = I(yif(xi) ≤ 0). (Also, clearly
when I(yif(xi) ≤ 0) = 0, then e−yif(xi) ≥ 0). The fourth line follows from step 1. The last
line is obtained from the fact that DT+1 is a probability distribution over the examples.
�

3. Now that the training error has been bounded in step 2 by the product of the normal-
izing weights Zt, the last step is to express Zt in terms of εt:

Zt = 2
√
εt(1− εt)

Proof: By definition,

Zt =
m∑
i=1

Dt(i)e
−yiαtht(xi)

=
∑

i:yi=ht(xi)

Dt(i)e
−αt +

∑
i:yi 6=ht(xi)

Dt(i)e
αt

= (1− εt)e−αt + εte
αt ,

where the last step follows from the definition of εt:∑
i:yi 6=ht(xi)

Dt(i) = εt,
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Since the expression above for Zt is valid for all αt, minimizing Zt with respect to αt for each
t will produce the minimum training error êrror(~).

∂Zt
∂αt

= −(1− εt)e−αt + εte
αt = 0

Solving, we find:

αt =
1

2
ln

(
1− εt
εt

)
.

�
Using this value of αt in the expression for Zt, and then plugging that into the bound on

the training error for ~, we end up with:

êrror(~) ≤
T∏
t=1

(
2
√
εt(1− εt)

)
which proves the theorem. �

9.4 Ensemble Methods

9.4.1 Basic idea and rational

The idea behind ensemble methods is very simple, combine multiple hypotheses to build a
(hopefully) more accurate hypothesis. The two most important questions that we should
answer, when considering a specific ensemble method are the following:

1. How do we generate the multiple hypotheses. Recall that we have only one sample, so
we need to specify how to use a single sample to generate multiple hypotheses.

2. How do we combine the hypotheses. Once we have multiple hypotheses we need to
specify how do we combine them to a single prediction. The most natural is a majority
rule or a weighted majority rule, but many other alternatives exists.

There are a few a basic reasons why ensemble methods can offer an advantage.(See also
Figure 9.1.)

1. Statistical reasoning: The sample does not have enough information to tightly spec-
ify the target hypothesis. There is a significant uncertainty about which hypothesis
is the “right” one. One can envision that we have multiple good hypotheses to better
specify the target function. This reason stresses the fact that we have limited amount
of data.
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2. Computational reasons: Many times we have to resort to heuristic methods when
searching for the best hypotheses given the data, given computational constraints.
The back-propagation algorithm for neural networks is an excellent example of this
computational limitation. This suggests that generating multiple hypotheses might
give a better approximation of the target function. This reason stresses the fact that
many times we have a limited amount of computation power.

3. Representation reasons: If the space of hypotheses is not convex, then averaging
multiple hypotheses might represent a hypothesis which is outside our hypotheses class.
This is true even with infinite data and unlimited computational power.

Figure 9.1: Reasons for using ensemble methods (Source:

http://web.engr.oregonstate.edu/ tgd/publications/mcs-ensembles.pdf )

9.4.2 Boosting

Boosting is actually an ensemble method. In boosting we are generating different hypotheses
by changing the sample distribution, and reweighing the examples. Based on the weak-learner
hypotheses we are guarantee to generate different hypotheses.
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In boosting we combine different the hypotheses using weighted linear threshold. The
coefficient of the different hypotheses are determine when the weak learners are selected.

9.4.3 Bias versus variance tradeoff

Much of the reasoning behind the ensemble methods can be traced to the bias versus variance
tradeoff. To understand the tradeoff, it is best to consider the Mean Square Error (MSE).

Consider a point x and let f(x) be the true label and h(x) be the predicted one, where h
is a random function (which depends on the sample, for example). We can rewrite the MSE
as:

MSE(x) = Eh[(f(x)− h(x))2] = bias2 + variance

where we define bias = E[f(x)− h(x)] and variance = V AR(h(x)) = E[h2(x)]− E2[h(x)].
We can see that for small sample we will have a high bias (not enough sample to fit well)

and low variance. For a very large sample we will have a low bias (fitting the data well)
while having high variance (due to the many points). The tradeoff would have a point which
will minimize the sum (which is exactly the MSE).

9.4.4 Bagging

The idea behind bagging is to generate different samples and use them to learn different
hypotheses. The problem is that many times we do not have a huge data set and we like
to make the best use of it. For this reason we will sample the data set multiple times to
generate the different hypotheses.

More precisely, in bagging the inputs are a single learning algorithm A and a sample S.
We perform the following steps:

1. Given S we generate sub-samples S1, . . . , Sk by selecting items from S with repetitions.
(The repetitions guarantee that each example by itself has the same distribution as the
underlying distribution.)

2. Given S1, . . . , Sk, we run A on each Si and learn a hypothesis hi.

3. We combine the different hypotheses using a simple majority.

A good question is why are we making progress. Note that the expected error of each
generated hi is identical (before sampling Si), and slightly higher than learning on S (since
we use less examples). This error can be viewed as a bias which is inherent between the
target function and the learned hypotheses, given the sample.

The main gain in averaging is done by reducing the variance. The variance of a error
single hypothesis fluctuates considerably. In contrast, the majority of many hypotheses is
much more stable. This suggests that we should be getting better generalization bounds.
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(a) without bagging (b) with bagging

Figure 9.2: Comparing the output of decision tree with and without bagging on same data
set. (source: http:www.slideshare.net0xdatagbm-27891077)

9.4.5 Stacking

We like a general methodology of combining multiple hypotheses. For example we might
learn a decision tree, a large margin classifier and AdaBoost. How can we combine them?
Majority is only one option!

Stacking give a general methodology of combining multiple hypotheses. The input is as
sample S, combining algorithm C, and k learning algorithms A1, . . . , Ak. We run the staking
procedure as follows.

1. We run algorithm Ai on S to generate hypotheses hi.

2. Given h1, . . . , hk, we build a new sample S ′, such that for any (x, y) ∈ S we have
((h1(x), . . . , hk(x)), y) ∈ S ′.

3. We run C on S ′ to generate the hypotheses H.

We can view bagging as a special case of stacking where Ai sub-samples S and C is a
simple majority. Similarly, boosting can be also viewed as a special case of stacking, where
Ai generates the ith weak hypotheses, and H is the weighted majority using the coefficients
αi. Random forest, presented in the next section, is another example of stacking.

9.4.6 Random Forest

Decision trees construction is highly sensitive to the sample. A tiny change in the sample can
generate a different predicate in the root, which will result in a completely different decision
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tree. In bagging we tried to overcome this problem by generating multiple decision tree and
taking their majority. In the original paper a sub-sample of about 66% was observe to be
the best in those experiments. This is one source of generating different decision tree.

Another source of generating different decision tree, is selecting which subset of attributes
will be considered in a given node. There is a parameter M which controls how many of
the N attributes we will consider. When M = N we consider all attributes, and we are
back to the regular decision tree algorithm. For M < N we select a random subset of
M attributes, and consider only them as candidates for the current node. We select the
attribute that minimizes the splitting index function. Note that in different nodes we select
different subsets randomly! Also, note that for M = 1 we simply generate a random tree. A
reasonable setting of M is

√
N (or even logN).

To combine the multiple decision trees, similar to bagging, we are using a simple majority
rule.

The main benefits of the random forest are: (1) Fast to run, (2) Easy to parallelize,
and (3) Competitive performance with leading machine learning algorithms (AdaBosot and
SVM).

The main weaknesses are: (1) Random forest losses the interpretability of decision trees,
(2) Many parameters around that need to be tuned, and (3) Feature selection collides with
sampling attributes.

Figure 9.3: Classification of spiral using decision forest (source:

http://cs.stanford.edu/people/karpathy/randomForestSpiral.png)


