
Introduction to Machine Learning Fall Semester

Homework 2: Dec 7th, 2016

Due: Dec 25th (See the submission guidelines in the course web site)

Theory Questions

1. `2 penalty for SVM. The formulation we have seen in class for the soft margin SVM assumes
we want to minimize

∑m
i=1 ξi. However, in some cases we might want a different loss function

for the margin penalty. Consider the following problem:

min
w,b,ξ

1

2
wTw +

C

2

m∑
i=1

ξ2i

s.t. yi(w
Txi + b) ≥ 1− ξi ∀i = 1, . . . ,m

(a) Notice that we have dropped the ξi ≥ 0 constraint in this problem. Show that these
non-negativity constraints can be removed. That is, show that the optimal value of the
objective will be the same whether or not these constraints are present.

(b) What is the Lagrangian of this problem?

(c) Minimize the Lagrangian with respect to w, b, ξ by setting the derivative with respect
to these variables to 0.

(d) What is the dual problem?

2. Upper bound on ‖w‖. Denote by w∗, b∗ and ξ∗ the optimal solutions to the primal SVM
soft margin optimization problem, and denote by α∗ the optimal solution to the dual problem.

(a) Recall that we know from the duality formulation, that the primal objective value is
equal to the dual objective value at the optimum. Write this equation, using w∗, b∗,α∗

and ξ∗.

(b) Using this equality, show that ‖w∗‖ ≤
√
Cm, where C is the penalty coefficient and m

is the number of samples.

3. Sequential minimal optimization. Sequential minimal optimization (SMO) is an algo-
rithm for solving the quadratic programming problem that arises during the training of the
SVM problem. In this question we will develop a simpler variant of it. We will be interested
in the soft margin SVM problem without an intercept term (that, is, b = 0):

min
w,ξ

1

2
wTw + C

m∑
i=1

ξi

s.t. yi(w
Txi) ≥ 1− ξi ∀i = 1, . . . ,m

ξi ≥ 0

1



2 Handout Homework 2: Dec 7th, 2016

(a) (Do not submit.) Show that the dual problem is the same as developed in class, but
without the constraint

∑m
i=1 αiyi = 0.

(b) We will now try to solve the dual problem using a coordinate gradient ascent approach.
That each, at every iteration, we will assume all the coordinates are fixed except for one,
and optimize the changing coordinate. Assume that α2, . . . , αm are fixed. What is the
optimization problem with α1?

(c) Solve the optimization problem. Note that α1 should satisfy the dual constraints.

(d) The SMO algorithm iterates through all the coordinates, at each step applying the
optimization procedure described, until no further optimization is possible. What is the
computational complexity of a single iteration? What is the space complexity?

4. Deriving new kernels. Given a > 0, K1,K2 positive definite kernels, f a real valued
function, and p a polynomial with positive coefficients. For each of the functions K below,
prove whether it is necessarily a positive definite kernel or give a counter-example:

(a) K(x, z) = K1(x, z)−K2(x, z)

(b) K(x, z) = K1(x,z)
K2(x,z)

(c) K(x, z) = aK1(x, z)

(d) K(x, z) = −aK1(x, z)

(e) K(x, z) = f(x)f(z)

(f) K(x, z) = p(K1(x, z))

5. Kernel Perceptron. We are given a data sample xi ∈ Rd, with corresponding labels
yi, . . . ∈ {−1, 1}. The Perceptron algorithm is run on the sample for T iterations, until
getting the final returned hypothesis, w∗ = wT+1.

(a) Show that w∗ is a linear combination of the samples xi.

(b) Change the Perceptron algorithm to use kernels. The algorithm will not (and cannot)
keep w∗ explicitly (why?). Write the pseudo-code to describe the new algorithm, and
demonstrate how its result can be used to classify a new sample point, x.



Handout Homework 2: Dec 7th, 2016 3

Programming Assignment

In this exercise, we will study the performance of various hyperplane algorithms on the MNIST
dataset, with which you are now familiar. As before, we will have a held out test set that will
be used to assess the performance of the selected best hypotheses. However, we will divide the
rest of the data to a training set and validation set. For algorithms in which we have to select
external parameters (e.g. C for SVM), we will use use the training set to train classifier for various
parameter values and use the validation set to check how well they do.

Under

~schweiger/courses/ML2016-7/hw2.py

(in the file system accessible from nova) you will find the code to load the training, validation and
test sets. It is recommended to use numpy and scipy where possible. Your program should run in
under an hour or so (it can be faster though).

Here we will investigate how well we can classify a digit as either 0 or 8. We will only use linear
classifiers with b = 0, and we will mean-center each coordinate of our data points (this is done in
the script above).

1. Perceptron. Implement the Perceptron algorithm. Do not forget to normalize the samples
to have unit length (i.e., ‖xi‖ = 1).

(a) Use only the first n = 5, 10, 50, 100, 500, 1000, 5000 samples as an input to Perceptron.
For each n, run Perceptron 100 times, each time with a different random order of inputs,
and calculate the accuracy of the classifier on the test set of each run. You should
therefore have 100 accuracy measurement per n. Print a table showing, for each n,
the mean accuracy across the 100 runs, as well as the 5% and 95% percentiles of the
accuracies obtained.

(b) The weight vector w, returned by Percepton, can be viewed as a matrix of weights, with
which we multiply each respective pixel in the input image. Run Perceptron on the entire
training set, and show w, as a 28×28 image, for example with imshow(reshape(image,

(28, 28)), interpolation=’nearest’). Give an intuitive interpretation of this im-
age.

(c) Calculate the accuracy of the classifier trained on the full training set, applied on the
test set.

(d) Choose one (or two) of the samples in the test set that was misclassified by Perceptron
(with the full training set) and show it as an image (show the unscaled images). Can
you explain why it was misclassified?

2. SVM. Now, we will see how well SVM works in this problem. Will we first try an existing
implementation: Use the LinearSVC class from sklearn.SVM. Use the loss=’hinge’ and
fit_intercept=False flags.

(a) Train a linear SVM on the training set, while using cross-validation on the validation set
to select the best penalty constant, C. It is highly recommended to search C on the log
scale, e.g., perform a grid search C = 10−10, 10−9, . . . , 1010, and increase the resolution
until you are satisfied.

Plot the accuracy of the resulting hyperplane on the training set and on the validation
set, as a function of C. What is the best C you found?



4 Handout Homework 2: Dec 7th, 2016

(b) Explain the behavior of training error as a function of C.

(c) Show the w for the best C as an image (see LinearSVC class documentation on how to
extract it).

(d) What is the accuracy of the linear SVM with the best C on the test set?

3. SGD. Now, we will try our own implementation of SVM, using the stochastic gradient descent
implementation discussed in class. Namely, at each iteration t = 1, . . . we sample i uniformly;
and if yiwt · xi < 1, we update:

wt+1 = (1− ηt)wt + ηtCyixi

where ηt = η0/t, and η0 is a constant. Implement an SGD function that accepts the samples
and their labels, C, η0 and T , and runs for a specified number of iterations T .

(a) Train the SGD SVM classifier on the training set. Use cross-validation on the validation
set to find the best η0, assuming T = 1000 and C = 1. For each possible η0, assess the
performance of η0 by averaging the accuracy on the validation set across 10 runs. Plot
the average accuracy on the validation set, as a function of η0.

(b) Now, cross-validate on the validation set to find the best C given the best η0 you found
above. For each possible C, average the accuracy on the validation set across 10 runs.
Plot the average accuracy on the validation set, as a function of C.

(c) Using the best C, η0 you found, train the SGD SVM classifier, but for T = 20000. Show
the resulting w as an image.

(d) What is the accuracy of the best classifier on the test set?

4. Bonus (<10pts). Can you find an SVM classifier (possibly with a kernel) that gives better
accuracy? Validate parameters on the validation set and measure your success on the test
set. Describe your attempts and the results you got, with suitable plots. No need to submit
code for this part.


